Real-World Use of Long-Acting
Cabotegravir + Rilpivirine in People
with HIV with Detectable Viral Loads
at Initiation: Findings from the
OPERA® Cohort

Ricky K. Hsu

AHF & NYU Langone Health, New York, NY, USA

Disclosures

- ◆ Research grants: Gilead Sciences, Janssen, ViiV Healthcare
- ◆Speaker honoraria : ViiV Healthcare, Merck, Gilead Sciences, Janssen
- *Advisory board participation: ViiV Healthcare, Gilead Sciences, Janssen, Epividian

Background

Cabotegravir + rilpivirine long-acting (CAB+RPV LA)

First complete long-acting injectable antiretroviral regimen

Approved by the FDA in January 2021

Indicated for ART-experienced people with HIV (PWH) with a **VL** <**50 copies/mL**

Background

Demonstration project at Ward 86 in San Francisco¹

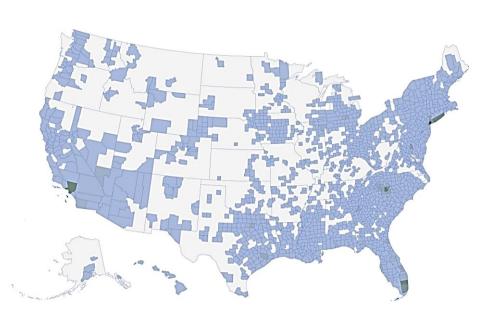
- Study population: VL ≥30 copies/mL at initiation & numerous barriers to adherence to oral medications.
- Findings: High rates of virologic suppression (97.5% with VL <30 copies/mL at 26 weeks) with CAB+RPV LA

HIV simulation model of long-term benefits²

 Predicted significant improvements in survival with CAB+RPV LA over standard of care oral regimens

Study Objectives

Among individuals with VL ≥50 copies/mL at 1st CAB+RPV LA injections:


1. To describe CAB+RPV LA real-world utilization over the first 2 years of availability in the US

2. To describe CAB+RPV LA effectiveness

Methods

Observational Pharmaco-Epidemiology Research & Analysis

>155K people with HIV in OPERA

~14% of people with HIV in the US

Study Design

Inclusion Criteria

- ◆ ≥18 years old
- ◆ ART-experienced
- ◆ VL ≥ 50 copies/mL at 1st injections
- ◆ 1st CAB+RPV LA injections between 21JAN2021-28FEB2023
- Did not participate in CAB+RPV LA clinical trials

Censoring Criteria

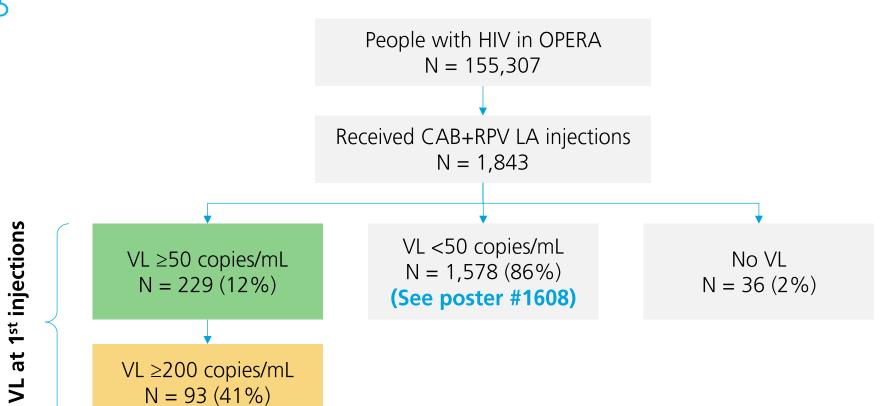
- ◆ Regimen discontinuation
- ◆ Lost to follow-up
- Death
- ◆ Analysis end (25MAR2023)

Outcomes

Achievement of virologic suppression

- Any VL <200 or <50 copies/mL
- Last VL <200 or <50 copies/mL

Confirmed virologic failure


Among those with a VL ≥50 to <200 at start or who achieved a VL<200 during follow-up:

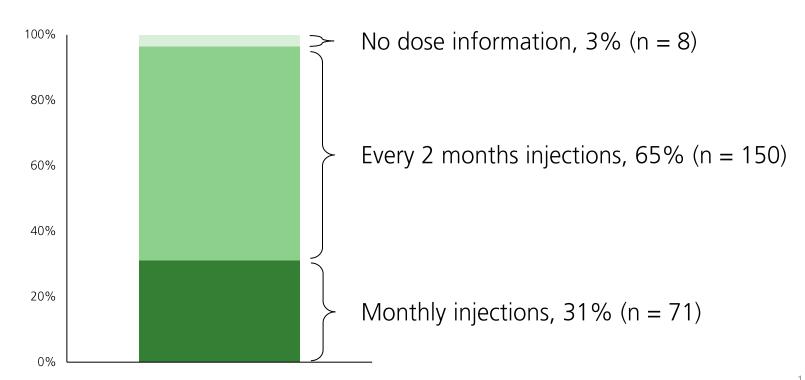
- 2 consecutive VLs ≥200 or
- VL ≥200 + discontinuation (regimen change or 2 missed injections)

Results

Study Population at Regimen Initiation

Demographic Characteristics at 1st Injections

	VL ≥50 copies/mL	VL ≥200 copies/mL
	(N=229)	(N=93)
Age, median (IQR)	41 (33, 52)	40 (32, 48)
Female sex, n (%)	71 (31)	44 (47)
Black race, n (%)	130 (57)	65 (70)
Hispanic ethnicity, n (%)	40 (17)	8 (9)



Clinical Characteristics at 1st Injections

	VL ≥50 copies/mL (N=229)	VL ≥200 copies/mL (N=93)
BMI, median kg/m² (IQR)	27 (24, 31)	27 (22, 31)
Time from HIV diagnosis, median years (IQR)	9 (4, 17)	9 (4, 16)
VL, median log copies/mL (IQR)	2.1 (1.8, 3.8)	4.2 (3.2, 4.7)
CD4 count, median cells/uL (IQR)	579 (350, 759)	401 (228, 664)
VACS Mortality Index, median (IQR)	17 (6, 30)	29 (17, 46)

Initial Dosing Schedule VL ≥50 copies/mL at 1st Injections

Follow-up

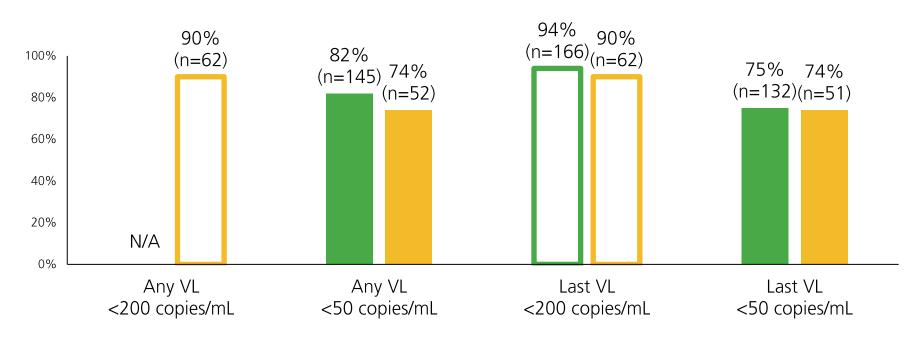
VL ≥50 at 1st injections: N = 229

Median follow-up: 6 months (IQR: 4, 10)

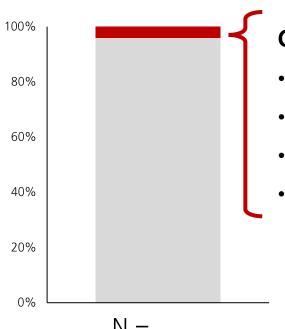
 \geq 1 follow-up viral load: N = 176 (77%)

VL ≥200 at 1st injections: N = 93

Median follow-up: 8 months (IQR: 4, 11)



 \geq 1 follow-up viral load: N = 69 (74%)


Achievement of Virologic Suppression During Follow-Up

 \blacksquare VL ≥50 copies/mL at initiation (N=176) \blacksquare VL ≥200 copies/mL at initiation (N=69)

Confirmed Virologic Failure During Follow-Up Among Those with a Follow-Up Viral Load

Confirmed virologic failure: n = 7 (4%)

- 2 had 2 VL ≥200 and remained on CAB+RPV LA
- 3 had 2 VL ≥200 then switched regimen
- 1 had 1 VL ≥200 + discontinuation, then switched regimen
- 1 had 1 VL ≥200 + discontinuation, then reinitiated CAB+RPV LA

Discussion

Key Findings

◆ 12% of 1st injection CAB+RPV LA users had a VL ≥50 copies/mL, even though CAB+RPV LA is not FDA indicated for such use

◆Most (82%) were able to suppress their viremia (VL <50 copies/mL) on CAB+RPV LA

 Long-acting injectables may have a role for individuals with a VL ≥50 copies/mL who may be struggling with adherence or tolerability of oral therapy

Strengths

- ← Large population of new users of CAB+RPV LA
- Real-world data captured through electronic health records
- Vast majority of HIV healthcare treaters are primary healthcare providers
- Regionally diverse representation of people with HIV in the US

Limitations

- Oral lead in and oral bridging were not well documented in electronic health records
- Reasons for administering long-acting injectable ART to those with a VL ≥50 copies/mL were not documented
- More follow-up needed as only a quarter of individuals had ≥10 months of CAB+RPV LA exposure
- Assessing the reasons for discontinuation and individual outcomes after switch will be important next steps

Acknowledgements

Co-authors

- Jennifer S Fusco
- ◆ Laurence Brunet
- Michael Sension
- Quateka Cochran
- Gayathri Sridhar
- ◆ Vani Vannappagari
- ◆ Jean Van Wyk
- Michael Wohlfeiler
- Gregory P Fusco

This research would not be possible without the generosity of people living with HIV and their OPERA® caregivers.

Additionally, we are grateful for the following individuals: Lito Torres (SAS Analyst), Kelly Oh (SAS QA), Bernie Stooks (IT/Data Management), Lisa Lutzi (Database Architecture) & Judy Johnson (Medical Terminology Classification).

This research was supported by ViiV Healthcare

