Durability and effectiveness of fostemsavir in heavily treatment-experienced people with HIV

Ricky K Hsu^{1,2}, Laurence Brunet³, Jennifer S Fusco³, Cassidy Henegar⁴, Vani Vannappagari⁴, Andrew Clark⁴, Philip C Lackey⁵, Gerald Pierone Jr.⁶, Gregory P Fusco³

¹ NYU Langone Health, New York, NY; ² AIDS Healthcare Foundation, New York, NY; ³ Epividian, Durham, NC; ⁴ ViiV Healthcare, Research Triangle Park, NC; ⁵ Signature Healthcare, Charlotte, NC; ⁶ Whole Family Health, Vero Beach, FL

Background

- Heavily-treatment experienced people with HIV (PWH) are individuals with limited treatment options due to resistance, drug intolerance, etc.
- Fostemsavir (FTR) is a novel attachment inhibitor which binds to glycoprotein 120 (gp120) on the surface of the HIV-1 virion, preventing interaction with the human CD4 cell binding site^{1,2}
- FTR is taken orally (twice daily), in combination with other antiretrovirals¹
- FTR was approved by the FDA on 2JUL2020 for people with multidrug resistant HIV-1 who have experienced multiple therapies, and whose HIV infection cannot be successfully treated with other antiretrovirals (ARVs) because of resistance, intolerance or safety considerations³
- The phase III BRIGHTE trial showed a distinctive trend of increasing virologic response and CD4 cell count which was sustained through 240 weeks on FTR^{4,5}

Objective

To assess the durability of FTR-containing regimens, as well as their virologic and immunologic effectiveness in routine clinical care in the US

Methods

Study Population

- OPERA cohort
- o Prospectively captured, routine clinical data from electronic health records from 96 clinics in the US (22 states, 1 US territory)
- >145K PWH as of March 2022, representing ~14% of people with diagnosed HIV infection in the US⁵
- Inclusion criteria
- HIV infection
- o Aged 18+
- Prescribed FTR for the first time between 2JUL2020 and 1SEP2021
- Censoring events
- Discontinuation of FTR
- Death
- Loss to follow-up (i.e., 12 months after last clinical contact)
- Study end (i.e., 28FEB2022)

Stratification

- Suppressed: baseline VL <50 copies/mL
- Viremic: baseline VL ≥50 copies/mL)

Durability

FTR discontinuation (changes in other ARVs allowed)

Virologic Response

- Assessed at 6 and 12 months (±3 months) after FTR start
- Viral suppression: viral load (VL) <50 copies/mL
- Virologic failure: 2 consecutive VL ≥200 copies/mL, or 1 VL ≥200 copies/mL followed by FTR discontinuation within 120 days, after suppression
- Viral blip: 1 VL ≥50 copies/mL preceded and followed by VLs <50 copies/mL

Immunologic Response

- By 6 months: ≥50 cells/µL increase from baseline CD4 count to last CD4 count within 6 months of baseline (days 1-180)
- By 12 months: ≥100 cells/µL increase from baseline CD4 count to last CD4 count within 12 months of baseline (days 1-365 days)
- By study end: Rate of change ≥ 0.278 cells/µL/day from baseline CD4 count to last CD4 count after 6 months (≥180 days after baseline)
- Derived from a ≥100 cells/µL increase in 12 months

Results

Table 1. Demographic and clinical characteristics at FTR initiation

	Overall N=86	Baseline VL < 50 copies/mL N=31	Baseline VL ≥ 50 copies/mL N=55
Age (years), median (IQR)	55 (48, 60)	60 (54, 66)	52 (40, 58)
Male sex, n (%)	74 (86)	27 (87)	47 (86)
Black race, n (%)	36 (42)	≤5 ^a	32 (58)
Hispanic ethnicity, n (%)	18 (21)	11 (36)	7 (13)
Years since HIV diagnosis, median (IQR)	21 (12, 30)	27 (15, 33)	18 (11, 27)
Prior exposure, n (%) INSTI	78 (91)	29 (94)	49 (89)
PI NNRTI	70 (81) 58 (67)	22 (71) 20 (65)	48 (87) 38 (69)
CD4 cell count <200 cells/µL, n (%) Viral load, n (%)	28 (32)	7 (22)	21 (38)
<50 copies/mL	31 (36)	31 (100)	NA
≥50 to <200 copies/mL	12 (14)	NA	12 (22)
≥200 to <10,000 copies/mL	22 (26)	NA	22 (40)
≥10,000 copies/mL	21 (24)	NA	21 (38)
ETP fostomsavir: UN/ human immunodoficions/ virus:	INICTI intograso strang	d transfor inhibitor: IOP	interguartile range:

FTR, fostemsavir; HIV, human immunodeficiency virus; INSTI, integrase strand transfer inhibitor; IQR, interguartile range; uL, microliter; mL, milliliter; N, number; NA, not applicable; NNRTI, non-nucleoside reverse transcriptase inhibitors; PI, protease inhibitor; VL, viral load

^a HIPAA requires the masking of cells with 1 to 5 individuals

Figure 1. Core agents prescribed in combination with FTR at index, N = 86

DTG + DRV	DTG	BIC	Any other (n ≤5)
20%	13%	13%	49%

BIC, bictegravir; DRV, darunavir; DTF, dolutegravir; FTR, fostemsavir; N, number

Figure 2. Changes in the background therapy while maintaining FTR usea, N = 86

^a From start of FTR until FTR discontinuation, death, loss to follow-up or study end

Table 2. Follow-up and censoring events

	Overall N=86	Baseline VL < 50 copies/mL N=31	Baseline VL ≥ 50 copies/mL N=55
Months on FTR, median (IQR)	10.8 (6.8, 15.3)	11.1 (6.4, 14.6)	10.4 (6.8, 15.9)
Any VL over follow-up, n (%)	69 (80)	24 (77)	45 (82)
Any CD4 over follow-up, n (%)	70 (81)	24 (77)	46 (84)
Still on FTR at study end, n (%)	60 (70)	20 (64)	40 (73)
Discontinued FTR			
n (%)	17 (20)	8 (26)	9 (16)
IR per 100 person-years (95% CI)	22.1 (13.8, 35.6)	30.9 (15.5, 61.8)	17.7 (9.2, 34.0)
Died, n (%)	7 (8)	3 (10)	4 (7)
Lost to Follow Up, n (%)	≤ 5 ^a	0 (0)	≤5 ^a

FTR, fostemsavir; CI, confidence interval; IQR, interquartile range; IR, incidence rate; mL, milliliter; N, number; VL, viral load ^a HIPAA requires the masking of cells with 1 to 5 individuals

Figure 3. Virologic suppression (i.e., VL <50 copies/mL) over follow-up, by baseline viral loada

FU, follow-up; mL, millimeter; VL, viral load

^a Among PWH with a viral load measured within 3 months before or after the follow-up timepoint of interest b Any VL <50 copies/mL at any point during all of follow-up

Figure 4. Immune response^a over follow-up, by baseline viral load^b

Mo, months; VL, viral load

^a Rate of change ≥ 0.278 cells/µL/day from baseline CD4 count to last CD4 count after 6 months (≥180 days after baseline) b Among PWH with a baseline CD4 and a follow-up CD4 in the first 6 or 12 months on FTR

Figure 5. Discordance of virologic and immunologic response

Baseline VL < 50 copies/mL (n = 24)^a Baseline VL \geq 50 copies/mL (n = 44)^a

		Virologic suppression ^b				Virologic suppression ^d	
		✓ Maintained	≭ Lost			✓ Achieved	Not achieved
Immune recovery ^c	✓ Achieved	6 (25%)	≤5	Immune recovery ^c	√ Achieved	≤5	≤5
	Not achieved	11 (46%)	≤5		x Not achieved	17 (39%)	22 (50%)

a Among PWH with a baseline CD4, ≥1 follow-up CD4 and ≥1 follow-up VL; b Maintained: All follow-up VL <50 copies/mL, **Lost**: Any follow-up VL ≥50 copies/mL; ^c **Achieved**: CD4 increase ≥0.278 cells/µL/day from baseline to last CD4 count (≥180 days after baseline), **Not achieved**: CD4 increase <0.278 cells/µL/day from baseline to last CD4 count;

d **Achieved**: Any follow-up VL <50 copies/mL, **Not achieved**: All follow-up VL ≥50 copies/mL

Discussion

- In routine clinical care in the US, the population receiving a prescription for FTR was heterogenous, varying substantially by baseline viral load (Table 1)
- FTR-containing regimens were durable, with most PWH remaining on FTR at study end (Table 2)
- 1/3 experienced changes in the background therapy prescribed with FTR during the study period (Figure 2)
- Over the entire study period, most PWH with a baseline VL <50 copies/mL remained suppressed throughout follow-up, and half of those with a baseline VL ≥50 copies/mL achieved suppression (Figure 3)
- Virologic failure or blips were observed in ≤5/19 suppressed PWH with ≥2 VL and ≤5/10 viremic PWH with ≥2 VL after suppression (not shown)
- By 12 months of FTR use, CD4 recovery (i.e., CD4 cell increase ≥100 cells/μL) was achieved by 25% of PWH with a baseline VL <50 copies/mL and 13% of those with a baseline VL ≥50 copies/mL (Figure 4)
- 25% of PWH with a baseline VL <50 copies/mL achieved CD4 recovery while maintaining virologic suppression; 11% of those with a baseline VL ≥50 copies/mL achieved CD4 recovery regardless of virologic suppression achievement (Figure 5)
- Limitations
 - Adherence, resistance and reasons for discontinuation were not available or incomplete in the electronic health records
 - Follow-up was limited in this early evaluation of real-world FTR use in the COVID-19 era
 - 20% had no viral load and/or CD4 cell count (Table 2)
 - Only 61% of suppressed and 18% of viremic PWH had sufficient data to assess virologic failure and blips
 - Additional follow-up time will provide a more robust assessment

Key Findings

Among PWH initiating FTR in routine care in the US:

- Most maintained FTR use throughout the study period; over a third had background therapy changes while on FTR
- Favorable virologic and immunologic responses were observed in PWH with a baseline VL <50 copies/mL, though responses were more modest in PWH with a baseline VL ≥50 copies/mL

References

- . Muccini et al. Efficacy and Safety Profile of Fostemsavir for the Treatment of People with Human Immunodeficiency Virus-1 (HIV-1): Current Evidence and Place in Therapy. Drug Des Devel Ther 2022; 16: 297-304.
- . Spivack et al. HIV: how to manage heavily treatment-experienced patients. Drugs Context 2022; 11. 3. U.S. Food & Drug Administration. FDA Approves New HIV Treatment for Patients With Limited Treatment Options. July 2, 2020.
- https://www.fda.gov/news-events/press-announcements/fda-approves-new-hiv-treatment-patients-limited-treatment-options
- Lataillade et al. Safety and efficacy of the HIV-1 attachment inhibitor prodrug fostemsavir in heavily treatment-experienced individuals: week 96 results of the phase 3 BRIGHTE study. Lancet HIV 2020; 7(11): e740-e51.
- Aberg et al. Efficacy and Safety of Fostemsavir Plus Optimized Background Therapy in Heavily Treatment-Experienced Adults With HIV-1: Week 240 Results of the Phase 3 BRIGHTE Study [EPB160]. 24th International AIDS Conference, Montreal, Canada, 2022
- 6. Centers for Disease Control and Prevention. Estimated HIV incidence and prevalence in the United States, 2014–2018. HIV Surveillance

Acknowledgements

This research would not be possible without the generosity of people living with HIV and their OPERA caregivers. Additionally, we are grateful for the following individuals: Kelly OH (SAS programming), Lito Torres (QA), Bernie Stooks (Data Management), Lisa Lutzi (Database Architecture), and Judy Johnson (Medical Terminology Classification)

Support

This research was sponsored by ViiiV Healthcare

^b Core agent switch, >1 change in which core agents are added and removed, or changes in non-nucleoside reverse transcriptase inhibitor only